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Abstract 
In our previous research, we investigated the automatic generation of questions with single vari-
able and the application to computer architecture teaching. In the current research, we extend the 
previous approach to generating questions with multiple variables on Directed Acyclic Graph 
(DAG) knowledge structures. Questions generated with the new algorithm are more complex and 
require more mathematical skills to solve. The algorithms can be applied to any discipline for 
which the conceptual and analytical knowledge can be represented by a DAG. 

Keywords:  Intelligent tutor, automatic question generation, difficulty assessment, multiple vari-
ables, guided problem solving. 

Introduction 
Research on intelligent tutoring has produced many interesting results, for example Frasson, 
Gauthier, and Lesgold (1996), Larkin, Chabay, and Sheftic (1990), and Wenger (1987). Web-
based online courses are also being developed at many educational institution and much research 
effort is focused on Web-based courses, for example, Boysen and Van Gorp (1997), Culwin 
(1998), and Wolz (1993). However, research on automatic question generation and difficulty 
analysis based on conceptual structures (Sowa, 1984) and ontological engineer (Heflin; 2001; 
“The Simple HTML”, 2000) is still a weak link. Some researchers produced results (Soldatova & 
Mizoguchi, 2003; Kunichika, Katayama, Hirashima, & Takeuchi, 2003) using approaches not 
based on conceptual structures. 

In a previous paper (Li & Sambasivam, 2003), we presented research results on automatic ques-
tion generation and difficulty assessment for intelligent tutoring. That approach was successfully 
applied to the computer architecture course using a quantitative hierarchy. A knowledge structure, 
the concept graph, based on semantic networks, was used to automatically generate verbal, de-
scriptive questions about computer architecture. That algorithm can only generate a question in a 
single variable. In addition, we also presented a quantitative method for assessing the difficulty of 

questions.  

In this paper, the focus is on relaxing 
the restrictions of the previous algo-
rithm. A new algorithm will allow the 
generation of a question in multiple 
variables. The knowledge structure for 
question generation is a Directed 
Acyclic Graph (DAG) concept graph. 
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This paper is organized as follows: 

• This section presents an introduction to the subject of the paper. It also outlines the con-
tributions of the paper. 

• Section 2 is a review of our approach to automatic question generation. Concepts perti-
nent to the new algorithm are also defined in this section. 

• Section 3 presents a new algorithm for automatic question generation in multiple vari-
ables. 

• Applications and examples using the new algorithm will be presented in section 4. 

• A summary with concluding remarks will be given in the last section. 

Our approach needs well-formulated concept hierarchies. The development of a meaning hierar-
chy in a course may take years of experience and much time. Simply following a book or two will 
not be sufficient. We allow a combination of fixed object composition and dynamic multiple in-
stantiations of a class of objects. Our approach is applicable to a wide range of subjects that do 
not require development of new data structures and algorithms. In other words, our approach, in 
its current stage, is not readily applicable to such courses as data structures and algorithm design. 

The contribution of this paper is in its development of a new algorithm for automatic question 
generation on DAG based knowledge structure with multiple variables. This new algorithm is 
also guaranteed to generate solvable questions when the system of linear or non-linear equations 
are solvable. 

A Review of Automatic Question Generation 
A hierarchical functional concept graph is used in our teaching system. Our functional concept 
graph is an augmented version of conceptual graphs. A functional concept graph G consists of a 
set of nodes V and a set of directed edges E. The edges connect the nodes of V. In this paper, G is 
always a directed Acyclic Graph (DAG). 

The functional concept graph is a hierarchical data structure: each node ni of the DAG is associ-
ated with a level li. Node ni may have a set of incoming edges {ei,1, ei,2, . . . ei,k}, connecting lower 
level nodes. A node without any incoming edge is a source node. A node is also associated with a 
value. The value vi of a node ni is computed by a function vi = ψi(vi,1, vi,2, . . . , vi,k), where vi,j is 
the value of the input node nj connected by edge ei,j. The set of input nodes form the set of part-
ners for node ni. Associated with each node ni is also a value interval (li,ui), which is empirically 
determined by the author of the tutoring system. In automatic question generation, this interval is 
used to generate meaningful random value for a node. The description of the concept graph here 
is brief. A more detailed description can be found in Li (1997). There, an augmented concept 
graph is also defined. The augmented concept graph is what we use in several designs. 

The normal direction of computation flow is to compute an output value vi for node ni from its 
input node values using the function ψi(vi,1, vi,2, . . . , vi,k). However, we do allow other directions 
of computation flow. An inverse function φij is defined, when appropriate, for an input edge ei,j 
such that vi,j = φij (ei,1, . . . , ei,j-1, ni, ei,j+1, . . . , ei,n). This value can be assigned to the correspond-
ing partner node nj. The existence of inverse functions may bring an extra degree of flexibility 
and allow the system to generate more sophisticated questions. 

It is important to note that our definition of concept graphs allows each function to generate a 
single output value from a set of inputs regardless of the direction of computation flow. 
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Question Difficulty Assessment 
We define the degree of difficulty as D = w1N + w2P + w3M,  where N is the number of condi-
tions given in the questions (that is, the number of terminal nodes), P is the number of downward 
edges in the paths traversed during question generation, and M is the number of upward edges 
traversed during question generation. We use three weight factors w1, w2 and w3 to balance be-
tween the path length and the number of conditions. Typically, w1<w2<w3 because upward edges 
traversed represent more difficult concept association and downward edges, and the total number 
of edges, which corresponds to the number of problem solving steps involved, carries more in-
formation about the effort needed in problem solving. 

This definition of degree of difficulty is based on a concrete knowledge structure. Hence, it is 
more subjective and is a more accurate measure of the effort needed to solve a problem. To our 
knowledge, this is the first difficulty measurement based on a computation structure and algo-
rithm. 

Question Generation Algorithm 
For easy understanding and completeness of presentation, we first review the original algorithm 
for automatic generation of single variable questions. Due to space limitation, we only present the 
top level of the question generation algorithm. The Generate procedure in the algorithm is not 
included here. Interested readers are referred to Li and Sambasivam (2003). 

Algorithm Question Generation: 
1. Randomly choose a question type (either 1 or 2); 

2. Randomly select a node nd from the functional concept graph as the destination node at 
which a result is to be computed; 
Initialize all the node flags to “off”; 

3. If the question type is 1, call procedure Generate(nd);  
collect the generated conditions and paraphrase the question; 

4. If the question type is 2, call procedure Generate(nd); 
collect the generated conditions in set S1; 
call procedure Generate(nd) again; 
collect the generated conditions in set S2; 
paraphrase the question from S1, S2 and the comparison operator; 

We are able to show that given the DAG, the node functions and the inverse functions, the above 
algorithm produces only solvable questions. This is a fundamentally important result, for the us-
ers will not waste time to tackle an unsolvable problem and will not suffer from the frustration of 
not being able to solve a problem after devoting a significant amount of time. A guided learning 
approach using DAG concept graphs is also found in Li (1997). 

Definitions for Multiple Variable Questions 
A direct graph is a graph in which the edges have directions. Each edge leads from one node to 
another. A direct acyclic graph (DAG) is a directed graph that contains no directed cycles. 
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A node with multiple edges coming from other nodes is said to have multiple fan-ins. If some of 
the multiple fan-in paths converge in the same node again, these are paths are reconvergent. Our 
algorithm uses multiple fan-in paths to generate questions with multiple variables. 

If two paths from node z lead to node x and node y, then z is the common ancestor of x and y. 
This definition also includes the case when x is an ancestor of y or y is an ancestor of x. When z 
is different from x and y, it is called a proper ancestor of x and y. The concept of proper ancestry 
is very important in question generation with multiple variables. 

Automatic Question Generation in Multiple Variables 
In science and engineering application, a question of two or three variables is considered difficult 
to solve although solving a system of equations with two or three variables in a math course is 
common. The difficulty arises from understanding the problem concept and setting up the equa-
tions. Solving the equations is just one step in the overall exercise. In this section, we consider the 
automatic generation of questions with two variables. 

Generally speaking, two variable questions can be generated using the common ancestor relation-
ship. Specifically, we consider two classes of two variable questions as described below. 

• The two nodes n1 and n2 representing the two variables have two or more proper com-
mon ancestors ai and aj, and further more neither is ai an ancestor of aj nor aj is an ances-
tor of ai. 

• One node is the ancestor of another. 

The two classes of questions need different algorithms to generate and the latter class typically is 
easier to solve than the former. 

The difficulty of a question is given in a variable credit. The amount of credit is distributed 
among the nodes descending from the common ancestor, including the terminal nodes of the 
question. The algorithm below generates questions for the case when one node is the ancestor of 
another. 

Algorithm Multi-variable Question Generation1: 
1. Select a node x in the DAG graph such that x must have more than one edge leading to other 

nodes. (That is, node x has multiple fan-outs.) Use the name of node x as one variable. 

2. Following one path leading from x to a descendant y that also has descendants. Use the name 
of node y as another variable. 

3. Distribute the total credit to node x and node y proportionally as credit_x and credit_y. 

4. Call GenerateOne(y, credit_y). This procedure recursively descends the DAG until the 
amount of credit is exhausted. It also generates random values within the ranges specified in 
the terminal nodes. This process is similar to that in Li and Sambasivam (2003). 

5. For each descendant w of x 

a. Allocate credit_w from credit_x; 

b. Call GenerateOne(w, credit_w); 

6. Append the verbal question strings generated from all the GenerateOne() calls. 
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The GenerateOne() procedure marks the nodes it visited during its recursive calls. It must also 
avoid nodes that have been marked. The pseudo code of the GenerateOne procedure is shown 
below. 

Procedure GenerateOne(n, credit): 
1. remaining_credit = credit – n.credit; 

2. Mark node n; 

3. If remaining_cedit <= 0, return; 

4. Find the set d = {n1, n2, …, nk} of unmarked descendants of node n; 

5. Randomly allocate the remaining_credit to the set of unmarked descendants as {c1, c2, …, 
ck}; 

6. For each ni in d, GenerateOne(ni, ci); 

For guided problem solving,  

• one starts from the terminal descendants of node y and performs computation in a node 
when all its inputs are available.  

• This process proceeds recursively until a value for y is computed.  

• Recursively compute values for ancestors of y until a node which is a direct descendant 
of x. 

• Recursively compute values for other descendants of x. 

• Compute a value for x from the values of all its descendants. 

Proposition1: The algorithm Multi-variable Question Generation1 always generates two vari-
able questions that are solvable. 

The following algorithm generates questions for the case when two nodes have two or more 
proper common ancestors. The algorithm requires a preprocessing step that finds all the least 
common ancestors of the nodes in the DAG and tabulates the least common ancestors in a table 
Tab. 

Algorithm Multi-variable Question Generation2: 
1. Mark all the nodes in the DAG that have multiple fan-ins as “I”. 

2. Mark all the nodes in the DAG that have multiple fan-outs as “O”. 

3. Select, from the table Tab, two nodes x and y that have two proper common ancestors a 
and b where a and b are two least common ancestors (LCAs) of x and y. 

4. Set the name of node x as one variable and the name of node y as another variable. 

5. Allocate credits to the nodes x, y, a, b as credit_x, credit_y, credit_a and credit_b. 

6. Call GenerateOne(a, credit_a). This call must terminate if x or y or a marked node is en-
countered. 

7. Call GenerateOne(b, credit_b). This call must terminate if x or y or a marked node is en-
countered. 
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8. Append the verbal strings from the above four GenerateOne() calls to form the question. 

There are many known algorithm for finding all least common ancestors in a DAG, for example 
Eppstein (1995), Harel and Tarjan (1984) and Schieber and Vishkin (1988). For this second algo-
rithm, the problem generated can be solved with a numeric iterative algorithm. If the algebraic 
operations involved are complex, it becomes difficult to use guided problem solving. We do not 
yet have a way to map it to an intuitive GUI design for guided learning. 

Guided problem solving is well-developed for the single variable algorithm, as discussed in Li 
(1997). For the second multiple variable algorithm, however, guided problem solving is not yet 
clearly defined. 

Proposition2. When two least common ancestors are available for two nodes in the DAG, the al-
gorithm Multi-variable Question Generation2 always generates two variable questions that are 
solvable. 

The above algorithms can be extended to generate questions with three or more variables. How-
ever, the extension is a non-trivial task. 

Examples will be presented to illustrate the operations of the above algorithms in the next section. 
These examples will help to clarify some key points of the algorithms. 

Applications 
Our algorithms can be applied to many subjects in science and engineering, for example, physics, 
electronics, computer architecture, computer networking, etc. 

This approach does not lend itself readily to programming and algorithm courses. Algorithm ani-
mation is effective in programming and algorithm design courses. 

A combination of algorithm animation and our approach will be effective to a wide range of 
courses. For example, Operating Systems and Local Area Network (LAN) are two subjects that 
would benefit significantly from a combination of the two approaches. We are currently develop-
ing ontologies and algorithm simulators for the following subjects. 

• Local Area Networks (LAN). An online teaching web site is under development for our 
LAN course. Many algorithm simulators have been developed to assist the learning of 
protocols and algorithms. 

• Operating Systems (OS). We are designing algorithm simulators for OS course. We are 
also developing an upper ontology for OS. 

• Database Design. An upper ontology has been extracted for database principles from Rob 
and Coronel (2003). We are also developing ontology for query design. 

• Computer Architecture. A comprehensive upper ontology has been developed for quanti-
tative computer architecture based on the work of Hennessey and Patterson (1996). Algo-
rithmic simulators are being considered. 

A simplified concept graph for computer architecture is shown in Figure 1. We illustrate the 
working of our algorithms with a few examples. 
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Example 1. In this example, we will focus on the equation generation part of the algorithm Multi-
variable Question Generation1 and leave out the credit assignment details. Consider the path from 
(CPU cycles) → (CPU Time i) → (Weighted Exec Mean). 

The algorithm may select (Weighted Exec Mean) as the first variable and (CPU Time 1) as the 
second variable. A call GenerateOne(CPU_Time_1) assigns (Cycle time) to 10 (ns), CPU cycles 
to 12,000,000, (Memory stall cyclces) to 75,000 cycles. A second call Gener-
ateOne(Weighted_Exec_Mean) assigns (Frequency of program 1) to 0.8. The algorithm termi-
nates after generating these values.  

The algorithm effectively forms the following equations, 

• CPU_Time_1 = Cycle_time * (CPU_cycles + Memory_stall_cycles) = 10ns * (12,000,000 + 
75,000), and  

• Weighted_Exec_Mean = 0.8 * CPU_Time_1. 

The first variable (CPU Time i) can be computed from the terminal node values.  (Weighted Exec 
Time) can then be computed from (CPU Time i) and (Frequency of program i = 0.8). 

Example 2. Again, we focus on the question generation part and leave out the credit assignment 
details. Assume that we have two programs Prog1 and Prog2 in a test-bench to estimate the per-
formance of a machine. The two variables nodes are (CPU cycles 1) and (CPU cycles 2) for 
Prog1 and Prog2, respectively. The two least common ancestor nodes are the (Weighted Exec 
Mean) and the (Arithmetic Mean).  
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Figure 1. A Simplified Ontology for Computer Architecture. 
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The call GenerateOne(Arithmetic_Mean) yields the assignment of Cycle_Time = 10ns, Mem-
ory_stall_cycles1 = 4000, Memory_stall_cycles2 = 7,500, and Arithmetic_Mean = 232,500. 

The call GenerateOne(Weighted_Exec_Mean) yields the assignment of Frequency_Prog1=0.6, 
Frequency_Prog2=0.4,and Weighted_Exec_Mean = 218,000. 

The algorithm effectively forms the following equations in two variables, 
• CPU_cycles1 * Frequency_Prog1 + CPU_cycles2 * Frerquency_Prog2 = Weighted_Exec_Mean, and 

• (CPU_cycles1 + CPU_cycles2) / 2 = Arithmetic_Mean. 

Let CPU_cycles1 be x1 and CPU_cycles2 be x2. Substitute known values into the above, we ob-
tain the following simultaneous equations, 

• 0.6x1 + 0.4x2 = 218,000, and  

• (x1 + x2) / 2 = 232,500 

The variables can be computed by solving the above equations using either substitution or any 
numerical method. 

Summary 
In this paper, we extend previous research to automatic question generation with multiple vari-
ables. The algorithms are guaranteed to generate questions that are solvable. A credit assignment 
method is applied to control the complexity of the generated questions. 

This approach is being applied to several subjects. In the future, we will develop Web-based 
courses using a combination of this approach and algorithm simulation. We hope our methods 
will produce fruitful results for science and engineering education. 

For future research, we will focus on provided guided learning and related GUI for questions with 
multiple variables. 
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